Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 14(1): 5099, 2023 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-37640712

RESUMEN

Tropical cyclones do not form easily near the equator but can intensify rapidly, leaving little time for preparation. We investigate the number of near-equatorial (originating between 5°N and 11°N) tropical cyclones over the north Indian Ocean during post-monsoon season (October to December) over the past 60 years. The study reveals a marked 43% decline in the number of such cyclones in recent decades (1981-2010) compared to earlier (1951-1980). Here, we show this decline in tropical cyclone frequency is primarily due to the weakened low-level vorticity modulated by the Pacific Decadal Oscillation (PDO) and increased vertical wind shear. In the presence of low-latitude basin-wide warming and a favorable phase of the PDO, both the intensity and frequency of such cyclones are expected to increase. Such dramatic and unique changes in tropical cyclonic activity due to the interplay between natural variability and climate change call for appropriate planning and mitigation strategies.

2.
Proc Natl Acad Sci U S A ; 115(11): 2681-2686, 2018 03 13.
Artículo en Inglés | MEDLINE | ID: mdl-29483270

RESUMEN

Cyclonic atmospheric vortices of varying intensity, collectively known as low-pressure systems (LPS), travel northwest across central India and produce more than half of the precipitation received by that fertile region and its ∼600 million inhabitants. Yet, future changes in LPS activity are poorly understood, due in part to inadequate representation of these storms in current climate models. Using a high-resolution atmospheric general circulation model that realistically simulates the genesis distribution of LPS, here we show that Indian monsoon LPS activity declines about 45% by the late 21st century in simulations of a business-as-usual emission scenario. The distribution of LPS genesis shifts poleward as it weakens, with oceanic genesis decreasing by ∼60% and continental genesis increasing by ∼10%; over land the increase in storm counts is accompanied by a shift toward lower storm wind speeds. The weakening and poleward shift of the genesis distribution in a warmer climate are confirmed and attributed, via a statistical model, to the reduction and poleward shift of low-level absolute vorticity over the monsoon region, which in turn are robust features of most coupled model projections. The poleward shift in LPS activity results in an increased frequency of extreme precipitation events over northern India.

3.
Sci Rep ; 4: 6403, 2014 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-25228235

RESUMEN

Almost all climate models in Coupled Model Inter-comparison Project phase five (CMIP5) were found to have a cold bias in Sea Surface Temperature (SST) over the northern Arabian Sea, which is linked to the biases in the Indian Summer Monsoon (ISM). This cold SST bias was attributed to the anomalous cold winds from the north-western part of south Asian landmass during boreal winter. However, the origin of the anomalously strong cold winds over the Arabian Sea and its association with the large-scale circulation is obscure. Here we show that an equatorward bias in subtropical Jetstream during boreal spring season anomalously cools down the northern Arabian Sea and adjoining land regions in CMIP5 models. The models with stronger equatorward bias in subtropical jet are also the ones with stronger cold SST bias over the Arabian Sea. The equatorward shift coupled with enhanced strength of the subtropical jet produce a stronger upper tropospheric convergence, leading to a subsidence and divergence at lower levels over the Arabian deserts. The low entropy air flowing from the Arabian land mass cools the northern Arabian Sea. The weaker meridional temperature gradients in the colder models substantially weaken ISM precipitation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...